SourcePP
Several modern C++20 libraries for sanely parsing Valve's formats.
Loading...
Searching...
No Matches
MathExtended.h
Go to the documentation of this file.
1/*
2 * Some code in this header is taken from SciPy. Their license can be found
3 * in the THIRDPARTY_LEGAL_NOTICES.txt file at the root of this repository.
4 */
5
6#pragma once
7
8#include "Math.h"
9
10#include <array>
11#include <cstddef>
12
13namespace sourcepp::math {
14
15// Evaluate Chebyshev series
16template<std::size_t L>
17[[nodiscard]] constexpr double chebyshev(double x, const std::array<double, L>& array) {
18 const double* p = array.data();
19 double b0 = *p++;
20 double b1 = 0.0;
21 int i = L - 1;
22 double b2;
23 do {
24 b2 = b1;
25 b1 = b0;
26 b0 = x * b1 - b2 + *p++;
27 } while (--i);
28 return 0.5 * (b0 - b2);
29}
30
31namespace detail {
32
33/* Chebyshev coefficients for exp(-x) I0(x)
34 * in the interval [0,8].
35 *
36 * lim(x->0){ exp(-x) I0(x) } = 1.
37 */
38constexpr std::array<double, 30> besselI0A{
39 -4.41534164647933937950E-18, 3.33079451882223809783E-17, -2.43127984654795469359E-16,
40 1.71539128555513303061E-15, -1.16853328779934516808E-14, 7.67618549860493561688E-14,
41 -4.85644678311192946090E-13, 2.95505266312963983461E-12, -1.72682629144155570723E-11,
42 9.67580903537323691224E-11, -5.18979560163526290666E-10, 2.65982372468238665035E-9,
43 -1.30002500998624804212E-8, 6.04699502254191894932E-8, -2.67079385394061173391E-7,
44 1.11738753912010371815E-6, -4.41673835845875056359E-6, 1.64484480707288970893E-5,
45 -5.75419501008210370398E-5, 1.88502885095841655729E-4, -5.76375574538582365885E-4,
46 1.63947561694133579842E-3, -4.32430999505057594430E-3, 1.05464603945949983183E-2,
47 -2.37374148058994688156E-2, 4.93052842396707084878E-2, -9.49010970480476444210E-2,
48 1.71620901522208775349E-1, -3.04682672343198398683E-1, 6.76795274409476084995E-1,
49};
50
51/* Chebyshev coefficients for exp(-x) sqrt(x) I0(x)
52 * in the inverted interval [8,infinity].
53 *
54 * lim(x->inf){ exp(-x) sqrt(x) I0(x) } = 1/sqrt(2pi).
55 */
56constexpr std::array<double, 25> besselI0B{
57 -7.23318048787475395456E-18, -4.83050448594418207126E-18, 4.46562142029675999901E-17,
58 3.46122286769746109310E-17, -2.82762398051658348494E-16, -3.42548561967721913462E-16,
59 1.77256013305652638360E-15, 3.81168066935262242075E-15, -9.55484669882830764870E-15,
60 -4.15056934728722208663E-14, 1.54008621752140982691E-14, 3.85277838274214270114E-13,
61 7.18012445138366623367E-13, -1.79417853150680611778E-12, -1.32158118404477131188E-11,
62 -3.14991652796324136454E-11, 1.18891471078464383424E-11, 4.94060238822496958910E-10,
63 3.39623202570838634515E-9, 2.26666899049817806459E-8, 2.04891858946906374183E-7,
64 2.89137052083475648297E-6, 6.88975834691682398426E-5, 3.36911647825569408990E-3,
65 8.04490411014108831608E-1,
66};
67
68} // namespace detail
69
70constexpr double besselI0(double x) {
71 if (x < 0) {
72 x = -x;
73 }
74 if (x <= 8.0) {
75 double y = (x / 2.0) - 2.0;
76 return (std::exp(x) * chebyshev(y, detail::besselI0A));
77 }
78 return std::exp(x) * chebyshev(32.0 / x - 2.0, detail::besselI0B) / std::sqrt(x);
79}
80
81constexpr double kaiserWindow(double x, double b) {
82 const auto d = besselI0(b);
83 if (d == 0.0) {
84 return 0.0;
85 }
86 return besselI0(b * std::sqrt(1 - x * x)) / d;
87}
88
89} // namespace sourcepp::math
constexpr std::array< double, 25 > besselI0B
Definition: MathExtended.h:56
constexpr std::array< double, 30 > besselI0A
Definition: MathExtended.h:38
constexpr double besselI0(double x)
Definition: MathExtended.h:70
constexpr double kaiserWindow(double x, double b)
Definition: MathExtended.h:81
constexpr double chebyshev(double x, const std::array< double, L > &array)
Definition: MathExtended.h:17